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1 INTRODUCTION 

This paper shows how the time-dependent stress-strain state of a bending 
bar in creep can be obtained from global deflection measurements. One 
major problem in creep under 4-point bending is the determination of the 
correct creep strains in the inner roller span from displacement 
measurements. 

2 CREEP MEASUREMENTS 

2.1 Conventional measurements 

In the earlier literature, these deflections had to be determined indirectly 
from the displacement at mid-length of the testpiece or from displacements 
of the loading rollers. In the literature on creep measurements one will often 
find a very simple displacement measurement where only the deflection in 
the centre of the inner span is measured against a reference level, as shown by 
Shetty & Gordon (1979) and Grathwohl (1984). 

Evaluation of the displacement measurements poses some problems. A 
purely elastic relation is often applied in the form 

4hi  3s 2 ] 
emax= ,~- 2L 2 + 2Ls -- s 2 6¢ (1) 

where h is the height of the bending bar, L is the outer span, s is the inner 
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span, and bc is the displacement of the centre point relative to the reference 
plane. This, of course, is sufficiently correct only for low creep strains. 

The creep compliance method developed by Fluegge (1967) and 
Hollenberg et al. (1971) is based on deflections measured at the inner load 
points. The results obtained for the stationary creep range are: for the outer 
fibre stress, 

3(L - s)P (2m + 1) 
(2) 

bh 2 3m O'nlax ~---- 

and for the outer fibre strain, 

2h(m + 2) 
~L (3) /3max= (L -- s)(L + s(m + 1)) 

Here, P is the load applied and 6L is the displacement of the inner rollers 
relative to the outer one, and m is the exponent of the Norton creep law. 
Although it has been indicated in the literature that the creep compliance 
method should be restricted to the stationary creep range, eqns (2) and (3) are 
often wrongly applied to the whole creep test. 

With the 'constitutive law', 

e( t, .-- a) = amJ( t) 

taken as the basis for deriving eqns (2) and (3), any elastic part, 
~ a / E ( E  = Young's modulus), is completely ignored. These equations must 
therefore fall outside the stationary creep range. No stress redistribution due 
to creep effects can be calculated. 

2.2 Direct displacement measurements 

For direct displacement measurements in the inner roller span, a special test 
arrangement was developed by Fett et aL (1987). This test arrangement is 
sketched in Fig. 1. The displacements of the specimen are transmitted by a 
system of three A1203-slender rods on a balance. The signal of the LVDT 
was recorded as a measure of the deflection ~ in the inner span. These 
measurements are independent of roller flattening and settlement of the 
supporting structure, and only the bending beam part with a constant 
bending moment affects the result. 

The outer fibre strain e* is given by 

5" = ~- ~ (4) 

Creep measurements of two batches of MgO-doped hot-pressed Si3N4 
(HPSN) (NH206, FeldmiJhle AG, Plochingen) with a density of 3.20 g/cm 3 



Creep measurement of HPSN in bending 283 

'ads 

LVDT 
o n c e  

Fig. I. 

- ~  load ceil  

Deflection measurement device. 

were performed at 1300 and 1400°C. The heats were designated 'heat I' and 
'heat II'. Testpieces (3.5 mm x 4.5 mm x 45 mm) were diamond-machined 
from plain parallel billets. The outer and inner spans of  the 4-point bending 
arrangement were 40 mm and 20 mm, respectively. Figure 2 represents three 
curves obtained for heat II at 1300°C. Pronounced primary creep with very 
high outer fibre strain rates was encountered immediately after load 
application. Afterwards, the creep rates were almost constant, thus 
indicating secondary creep behaviour. 
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Fig. 2. Measured 'creep curves' for different initial outer fibre stresses. 
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3 STRESS-STRAIN BEHAVIOUR OF A CREEPING BAR U N D E R  
BENDING 

The strain rate in a fibre at the distance r/from the centre axis of a bending 
bar of thickness h is composed of the elastic deformation rate diE and the 
creep rate ~¢ 

g(y) = 6(y)/E + de(y) (5) 

In agreement with Bernoulli's hypothesis, the total strain rate is linearly 
distributed over the specimen. One can write 

6(y)/E + ~c(Y) = C + g*y (6) 

where y = 2rl/h is the normalised distance from the centre axis. Figure 3 
shows the geometric quantities and the strain distribution in the bending bar 
described by eqn (6). The term C describes a change AI in testpiece length. 
Only for non-symmetrical creep behaviour can AI :~ 0 be expected to apply. 
The term (g*y) describes the typical bending behaviour resulting in the 
deflection 6. 

By integrating eqn (6) over the cross-section, taking into account that the 
integral over 6 disappears, one obtains (Fettet  al., 1988) 

C=½ j" gcdy (7) 

Multiplying eqn (6) by y followed by repeated integration furnishes, for the 
constant-moment test with 5~/--- 0 (M = bending moment), 

~. = 3 j- gc Y dy (8) 

From eqn (6), the complete stress-strain history of an arbitrarily loaded 
bending bar can be determined by solving the differential equation: 

~ =  - d ¢ + ~  dcdy+ d¢ydy (9) 

as performed by Fett et al. (1986, 1988). 
If the creep law is known, the numerical evaluation of eqn (9) yields the 

complete stress-strain state of the bending bar. On the other hand, eqn (9) 
may be used to determine the local creep law from the global outer fibre 
strain measurements. 

4 DETERMINATION OF THE LOCAL CREEP LAW 

From the characteristic features of the measured curves, ~* =f(t) ,  the type of 
appropriate local creep law can be concluded. In principle, there are two 
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Fig. 3. Geometrical data and strain distribution. 

different ways of determining the accompanying parameters. Both methods 
are demonstrated here. The total creep rate is seen to be composed of a 
primary creep rate gv and the secondary part gs, such that 

where, for instance, 

(lO) 

~o = f ( a ,  %) 
and 

gs = 

The primary creep law will be evaluated by a least-squares procedure, the 
secondary part by an analytical asymptotic solution of eqn (9). 

4.1 Least-squares procedure 

The chosen creep law of eqn (10) is substituted into eqn (9). Numerical 
integration of eqn (9), starting from the initial stress distribution, ~i = M / W  

(W = moment of inertia), yields t~(y, t), %(y, t) and e*(t) for any set of creep 
parameters. The calculated outer fibre strains can be compared with the 
measured ones, and minimising the expression 

[e*(measured) - e*(calculated)] 2 = MIN (11) 

will furnish the best set of parameters. 
In the primary creep range, extremely high outer fibre strain rates occur. 

This is the reason for applying Nadai's creep law (Nadai, 1938) 

gp = AtT" e~- p (12) 

The Harwell VA02A subroutine allowed the least-squares calculation to be 
performed easily. In each step of the least-squares routine, a complete set of 
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TABLE 1 
Creep Parameters for HPSN (+ MgO) 

1300°C 1400°C 

heat I heat H heat I 

A (MPa,h) 1"35 x 10-15 4'0 x 10-16 5"8 x 10-17 

n 4"80 4" 10 4.60 
p 1-60 1.80 2"40 

B (MPa, h) 1'45 x 10 -6 1'95 x 10 -7 
m 1-75 1'75 

20 curves e*(t) was calculated up to t = 0.5 h and compared  with a set of  20 
measured curves. The best parameter  set A, n, p was found within two 
minutes of  C P U  time. The results are compiled in Table 1. In this procedure,  
only short  times were taken into account  to ensure that  all secondary creep 
parts could be neglected. 

4.2 Analytical solution 

The secondary part  gs, often described by Nor ton ' s  law, is modified to 
express a non-symmetrical  behaviour as follows: 

where 

gs = B2s tr" (13) 

1 for ~ > 0  
2s = 1/~" for tr < 0, 0t -~ 7 

where m is a constant.  Equat ion  (12) takes into considerat ion the 
significantly higher secondary creep rates than compressive stresses that  
occur due to tensile stresses, as described by Lange (1983). The related 
stationary stress distribution, as given by Fett  (1986), is 

M 2 m + l [ 1 2 x l ( ' + ' ) / " .  , , , / , . f l /~  for 
o . = ~ ) -  W 3m - -  ly + Yo) ~ -  1 for 

where y = -Yo 

Y + Y o > 0  
y + y o < 0  

(14) 

~c-1 
Yo K+ 1; ~c=~"/~m+l~ (15) 
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~s 
(h -1 ) 

10 -3 

10 -z. 

10-5 _ 

I i I 
T = 1300°C 

- -  I - 

I I 1- 
50 100 MPcI 200 

O'i = M / W  

Outer fibre stationary strain rates for different initial outer fibre stresses. 

is the neutral fibre of  the stationary stress distribution. Consequently, the 
strain rate on stationary outer fibre is seen to be 

1) 1 { 2 m + l  m+l  
eJ :  ~) = ~B L 6m 1 + (16) 

By plotting the outer fibre stationary strain rate versus the initial stress M/W,, 

the exponent m and the coefficient B can be calculated according to eqrt (16). 
Figure 4 shows the outer fibre stationary creep rates at 1300°C. The 
stationary creep data are also included in Table 1. 
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Development of the stress distribution in a bending bar. 
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5 T I M E - D E P E N D E N T  STRESS D I S T R I B U T I O N  

As all creep parameters  are known,  the t ime-dependent  stresses can be 
computed  according to eqn (9). The result is plotted in Fig. 5. The stress 
development,  starting f rom the initial linear stress distribution, is evident. 
The tensile stresses relax and the neutral  axis is shifted into the initial 
compression zone. 
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